Feedback damping of a microcantilever at room temperature to the minimum vibration amplitude limited by the noise level
نویسندگان
چکیده
Cooling the vibration amplitude of a microcantilever as low as possible is important to improve the sensitivity and resolutions of various types of scanning type microscopes and sensors making use of it. When the vibration amplitude is controlled to be smaller using a feed back control system, it is known that the obtainable minimum amplitude of the vibration is limited by the floor noise level of the detection system. In this study, we demonstrated that the amplitude of the thermal vibration of a microcantilever was suppressed to be about 0.15 pmHz(-1/2), which is the same value with the floor noise level, without the assistance of external cryogenic cooling. We think that one of the reason why we could reach the smaller amplitude at room temperature is due to stiffer spring constant of the lever, which leads to higher natural frequency and consequently lower floor noise level. The other reason is considered to be due to the increase in the laser power for the diagnostics, which lead to the decrease in the signal to noise ratio determined by the optical shot noise.
منابع مشابه
Phototermal self-excitation of nanomechanical resonators in liquids
We report the use of the photothermal actuation for the self-excitation of a selected vibration mode of a microcantilever in liquid. The gain of the positive feedback loop is adjusted in order to obtain a negative effective damping. In this regime, the amplitude noise is squeezed due to the nonlinear saturation of the system and the phase noise is largely reduced. The microcantilever vibration ...
متن کاملEffects of Fluid Environment Properties on the Nonlinear Vibrations of AFM Piezoelectric Microcantilevers
Nowadays, atomic-force microscopy plays a significant role in nanoscience and nanotechnology, and is widely used for direct measurement at atomic scale and scanning the sample surfaces. In tapping mode, the microcantilever of atomic-force microscope is excited at resonance frequency. Therefore, it is important to study its resonance. Moreover, atomic-force microscopes can be operated in fluid e...
متن کاملVibration and Noise Reduction Optimization Design of Mine Chute with Foam Aluminum Laminated Structure
The mining chute is an important equipment in the process of coal transportation and coal screening preparation. During the working process, the mining chute will generate a lot of vibration and noise because of constantly friction and impact of gangue and coal blocks. In order to reduce the vibration and noise during the operation of the chute, a new type of foam aluminum laminated structure i...
متن کاملتعیین تئوری - تجربی پارامترهای ترک غیرخطی در تیر ترکدار تحت ارتعاشات غیرخطی کم دامنه
In the vibration of a cracked structure with small amplitude oscillations, the crack necessarily is not fully open or fully closed. Therefore, in order to provide a realistic model for the crack, one should relate the stiffness and damping at the crack location to the amount of the opening of the crack. In this study, a continuous model for vibration of a beam with a fatigue crack under low amp...
متن کاملCompact and Efficient Active Vibro-acoustic Control of a Smart Plate Structure
An effective wide band active control law through one kind of the Dynamic Vibration Absorber (DVA) is proposed and studied in this paper. With the help of mechanical impedance method, active DVA control law is formulated based on the passive mechanical model. The electrical DVA can generate multi-mode active damping to the structure. The host structure is an aluminum plate and acceleration sign...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016